Minimizing Energy of Integer Unit by Higher Voltage Flip-Flop: VDDmin-Aware Dual Supply Voltage Technique
نویسندگان
چکیده
To achieve the most energy-efficient operation, this brief presents a circuit design technique for separating the power supply voltage (VDD) of flip-flops (FFs) from that of combinational circuits, called the higher voltage FF (HVFF). Although VDD scaling can reduce the energy, the minimum operating voltage (VDDmin) of FFs prevents the operation at the optimum supply voltage that minimizes the energy, because the VDDmin of FFs is higher than the optimum supply voltage. In HVFF, the VDD of combinational logic gates is reduced below the VDDmin of FFs while keeping the VDD of FFs at their VDDmin. This makes it possible to minimize the energy without power and delay penalties at the nominal supply voltage (1.2 V) as well as without FF topological difications. A 16-bit integer unit with HVFF is fabricated in a 65-nm CMOS process, and measurement results show that HVFF reduces the minimum energy by 13% compared with the conventional operation, which is 1/10 times smaller than the energy at the nominal supply voltage.
منابع مشابه
To Implement Energy Efficient of Integer Unit by Higher Voltage Flip Flop Based on Minimum operating Dual Supply Voltage Techinque
To achieve the most energy-efficient operation, this brief presents a circuit design technique for separating the power supply voltage (VDD) of flip-flops (FFs) from that of combinational circuits, called the higher voltage FF (HVFF). Although VDD scaling can reduce the energy, the minimum operating voltage (VDDmin) of FFs prevents the operation at the optimum supply voltage that minimizes the ...
متن کاملA Variability-Aware Energy-Minimization Strategy for Subthreshold Circuits
We investigate a design strategy for subthreshold circuits focusing on energy-consumption minimization and yield maximization under process variations. The design strategy is based on the following findings related to the operation of low-power CMOS circuits: (1) The minimum operation voltage (VDDmin ) of a circuit is dominated by flip-flops (FFs), and VDDmin of an FF can be improved by upsizin...
متن کاملHigh-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop
Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...
متن کاملA new low power high reliability flip-flop robust against process variations
Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...
متن کاملA dual-pulse-clock double edge triggered flip-flop for low voltage and high speed application
In this paper, a low voltage dual-pulse-clock double edge triggered D'flip-flop (DPDET) is proposed. The DPDET flip-flop uses a split output latch clocked by a short pulse train. Compared to the previously reported double edge triggered flip-flops, the DPDET flip-flop uses only six transistors with two transistors being clocked, operating correctly under low supply voltage. The total transistor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. VLSI Syst.
دوره 21 شماره
صفحات -
تاریخ انتشار 2013